NTPC Ltd, Sipat- CII Power plant Summit 2023

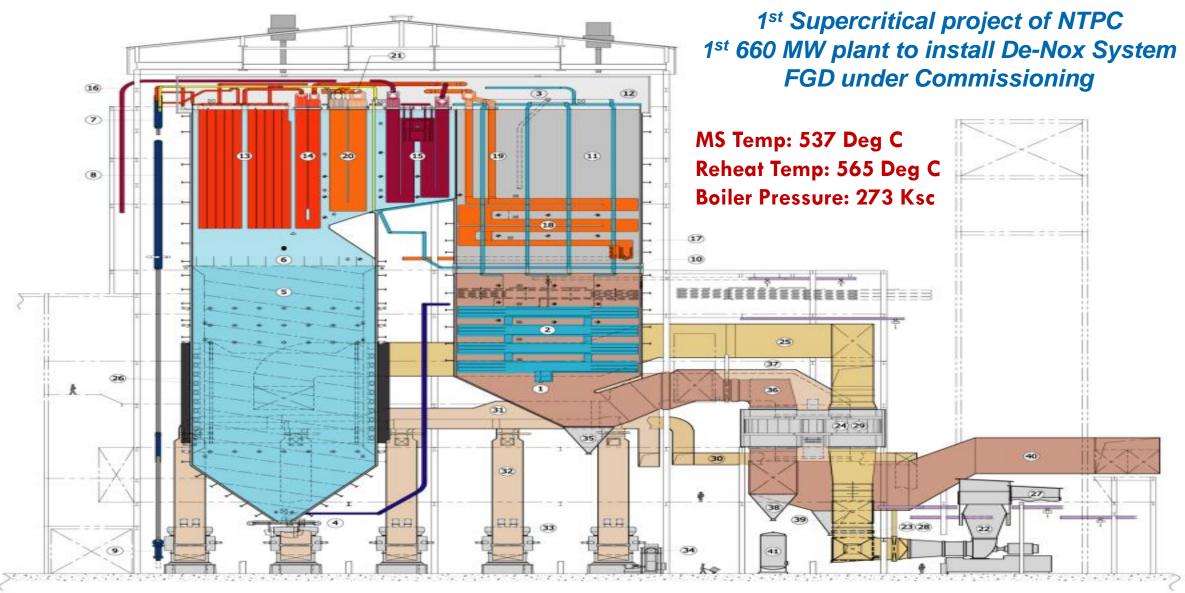
- Team Members
 - Mr Abhishek Saxena, DGM EEMG
 - Mr Arnav Kothiyal , Senior Manager EEMG

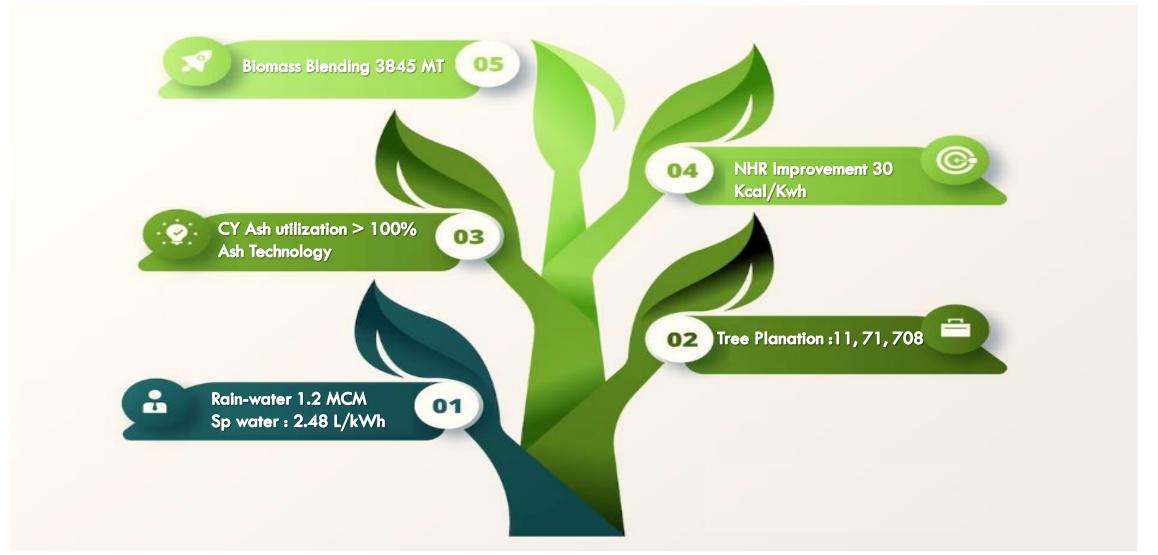
ISO 9001:2015,

ISO 14001:2015,

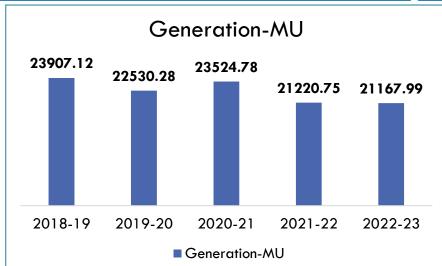
ISO 45001:2018,

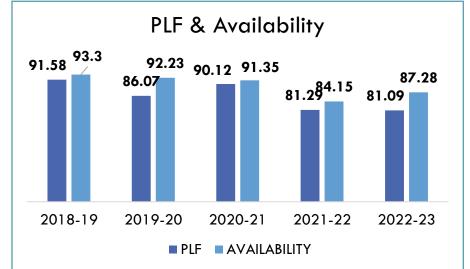
ISO 50001:2018

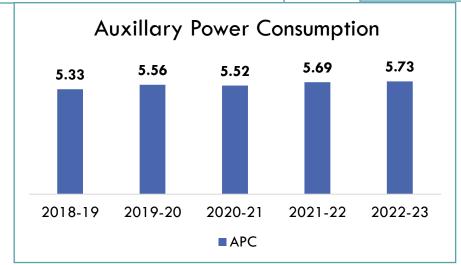


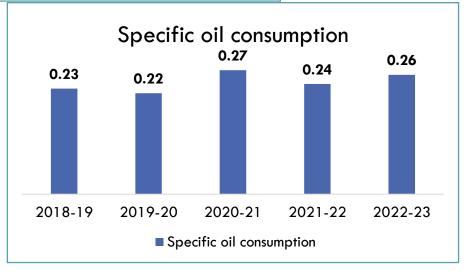

Sipat Super Critical Boiler (2980 MW, 660 MW X 3 + 500 X 2 MW)

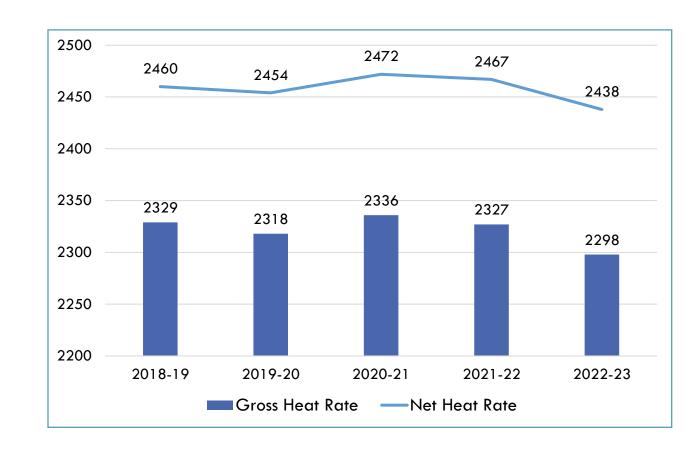
Sustainability & Power








SIPAT: Consistent performer over the years



Gross & Net Heat Rate Trends

- Central electricity regulatory commission (CERC) has fixed a normative Heat Rate for NTPC Sipat at 2338 kcal/kwhr based on the technology.
- NTPC Sipat has been able to maintain Gross Heat Rate below the Norms continuously for the past few years.
- Despite low PLF Heat Rate improved by 29 Kcal/kWh (CERC allows a degradation 1.25 %/29.35 kCal/kWh).
- Net Heat-rate improved by 29 Kcal/kWh over previous Year.

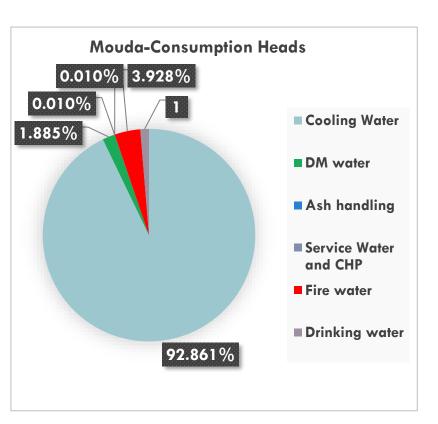
Benchmarking

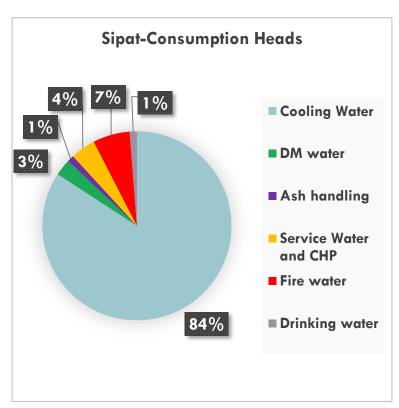
Bench Marking

Internal NTPC Performance Evaluation Matrix Ranking

- NTPC has a system of evaluating performance of its station based on a comprehensive matrix which covers all the aspects of performance like O&M Index, MOU Index, Thrust Area Index and Fuel index.
- Business Excellence(BE) department through BE position report.

Year	201 <i>7</i> -18	2018-19	2019-20	2020-21	2021-22
Position	5 th] st	4 th] st	4 th


APC Benchmarkng- With NTPC Mauda



SN	Description	Sipat- Stg I 660 MWX3	Mouda- Stg II 660MWX2	ECI-Sipat	ECI-Mouda (KW /MW)	
		KW	KW	KW / MW	KW / MW	
1	Draft Power	33501	18800	16.9	14.2	Action plan mad for improving the
2	Milling Power	9986	7538	5.0	5.7	Draft power & Ir Unit 1 after AOH Draft power ECI
3	Condensate System	6772	5012	3.4	3.8	12.0 kW/Kwh. Ui 2 under AOH.
4	CW System	17404	10728	8.7	8.1	CW system ECI higher due to Design
5	ESP System	5702	4510	3.0	3.4	•
6	Ash Handling system	5234	3380	1.75	1.60	100 % Dry ash utilization.

Water Consumption Benchmarking - NTPC Mauda

- Specific water consumption : Mouda-2.16; Sipat 2.48Lt/unit
- Only one reservoir in Mouda,
 capacity leading to reduced
 seepage and evaporation losses.
- Dry ash utilisation 100% in Mouda due to high demand.
- Action plan enforced to reduce the water loss in fire system & Service water, around 11 KM water pipe line being replaced.

Bench Marking

External: PAT (perform Achieve and Trade)

NTPC Sipat is Notified by BEE under PAT cycle VII

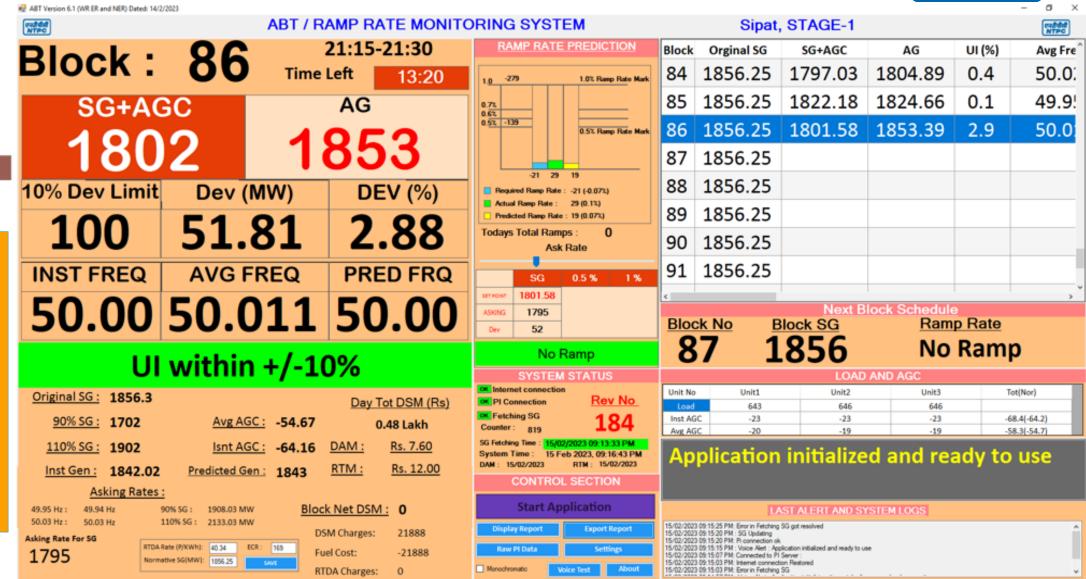
Baseline: 2418 kCal/kWh @ 2018-19

: 2412 kCal/kWh Target Assessment Year 2024-25.

PAT CYCLE	PERIOD	Aassess ment Year	NHR TARGET	NHR ACHIEVE D	ESCERTS
PAT CYCLE-I	2012-15	2014-15	2484	2438	+36443
PAT CYCLE-II	2016-19	2018-19	2430	2424	+13499

NTPC SIPAT TRADED CYCLE-1 ESCERTS ON IEX AND EARNED APPX 3 Cr.

PAT CYCLE-II M&V AUDIT, AEA RECOMMENDED FOR 13499 ESCERTS

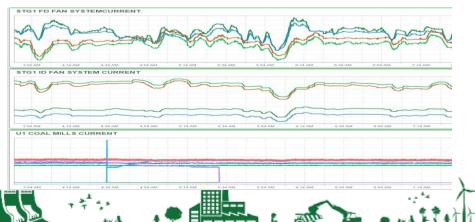

New Initiatives, Technology Use & Process Improvement Projects

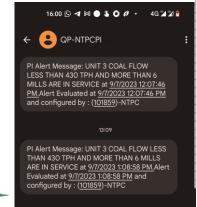
In-house Application for Generation Monitoring



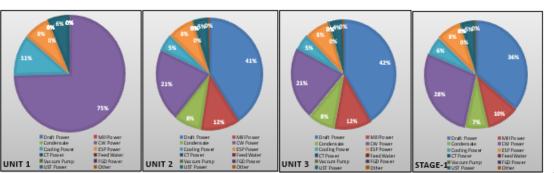
*Implemented in 24 NTPC Projects. Won NTPC *National Professional Circle Championship for This application

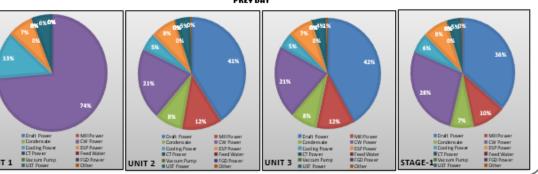
Tending & Prediction for Correct Operation


Upgraded Energy Management System With Mobile Alerts


Real time Dash Board

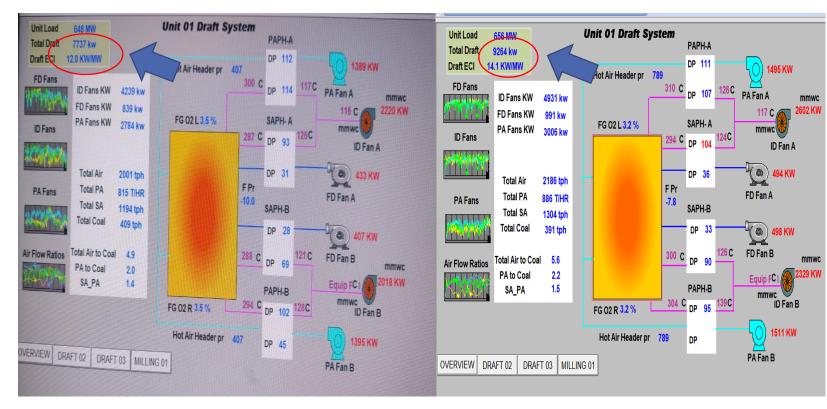
Power trends


Pi Alert sample message


Day Report System Wise

24-Jul-2023		Today				Prev Day			
Description	UHIT 1	UNIT 2	UMIT 3	Stage-1	UHIT 1	UMIT 2	UHIT 3	Stage-1	Romark
1 APC X	0.00	4.70	4.57	4.64	0.00	4.69	4.62	4.64	
2 UNITAPO	0	30538	29605	60144	0	30713	29893	60605	
3 Draft Pauer	0	11425	11260	22685	0	11486	11539	23025	
4 Mill Pauer	3	3281	3131	6415	0	3383	3190	6574	
5 Candonrato	0	2359	2267	4626	0	2365	2282	4647	
6 CW Paulor	5797	5850	5807	17454	5797	5848	5803	17448	
7 Cooling Pawer	885	1405	1315	3605	1028	1405	1317	3750	
8 ESP Paulor	600	2208	2048	4856	596	2172	2036	4803	
9 CTPauer	0	0	0	0	0	0	0	0	
10 Food Wator	0	0	0	0	0	0	0	0	
11 Vaccum Pump	0	102	104	206	0	102	104	206	
12 FGD Pauer	0	0	0	0	0	0	0	0	
13 USTPauer	490	1249	1154	2894	450	1249	1156	2855	
14 Othor	0	103	99	202	0	103	135	237	
	7775	27982	27186	62943	7871	28112	27562	63544	

CURRENT DAT


PRET DAT

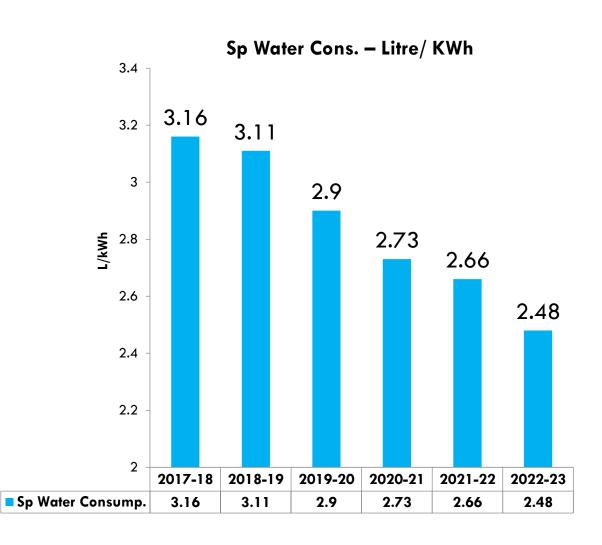
Draft Power Improvement

Draft power reduction by duct repair, thickness mapping, NMEJ repair, Refractory lining on flue gas guide vanes & area prone to erosion.

Condenser Performance Improvement

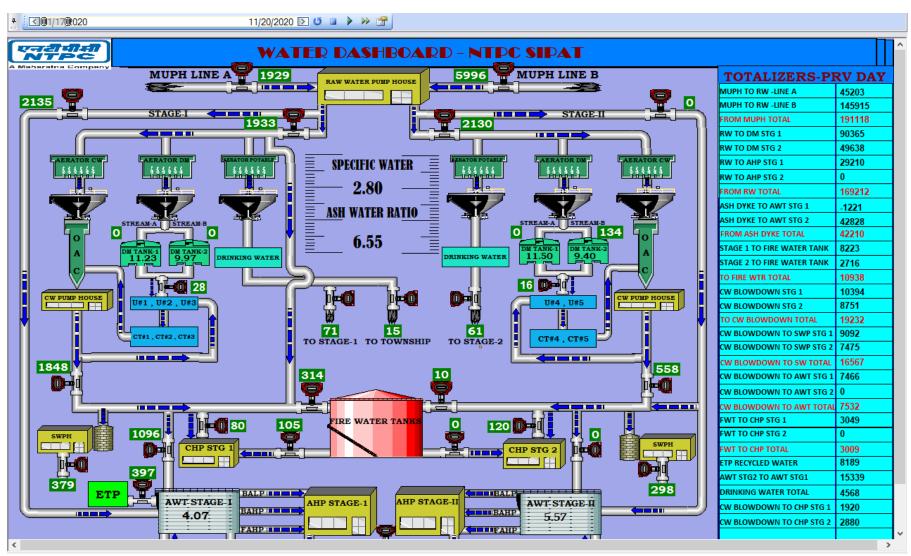
- High pressure Jet cleaning done at 700-800Kg/cm2 in Unit 1.
- Jet cleaning followed by bullet cleaning done in Unit 1.
- Continuous monitoring done by boroscopy to repeat jetting if dirty tube persists. New

The condenser vacuum in unit 1 improved more than design. Vacuum in U1, 73mmHg against a design of 77mmHg.



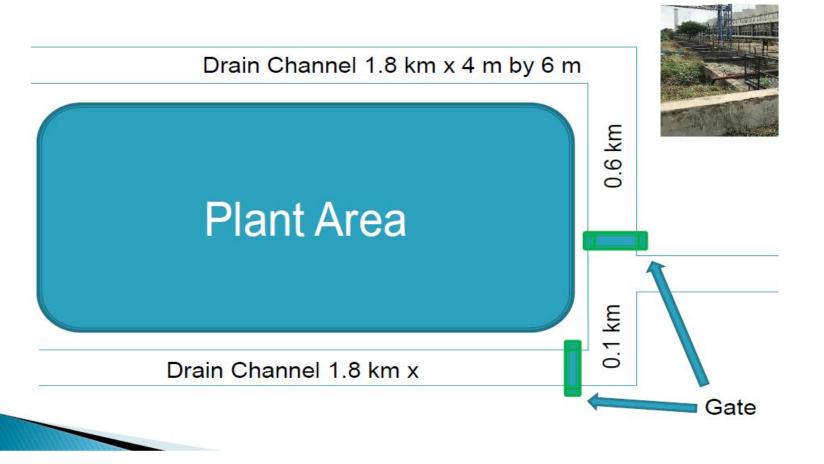
Environment Management

Water Management


- Capturing rainwater through ZLD setup. New
- Water Consumption Monitoring in Real time through Water dash board
- DAES implemented in Stage I units also. Station now has 100% DAES New
- Rail loading of railway rakes and dispatch of Ash to Cement Industries Started. New
- Arresting reservoir seepage by HDPE Liner replacement. New
- Wet System Stringent monitoring of Ash to Water Ratio in Daily Planning meeting, FAHP running hour optimized. New
- CW Cycle of Concentration (COC) has been Improved from 4 to 7 with Lot of Modification and system improvement.

Environment Management: Water

Water Dashboard:
Real time
monitoring of
water
consumption.
This dashboard is
selected for PAN
NTPC
implementation



Rain-water harvesting

RAINWATER HARVESTING

Water Harvested	Cost saving
1196056 m ³	146.51 Lakhs

Area	Remarks	PR Details				
Plant	Facility created	 RWH implemented on 28.8.22, near CT 2B RWH implemented on 08.10.22, near CT 1B RWH implemented on 24.12.22 near CT 3B RWH implemented on 05.06.23 near OAC 1 				
Hospital	Facility complete	ed.				
Township	PO awarded	Work in progress				
All area	RWH potential study by third party.	Study completed, Under Award for work				

RESERVOIR 1B SEEPAGE REPAIR WORK

Total Reservoir Capacity : 4.8 MCM.

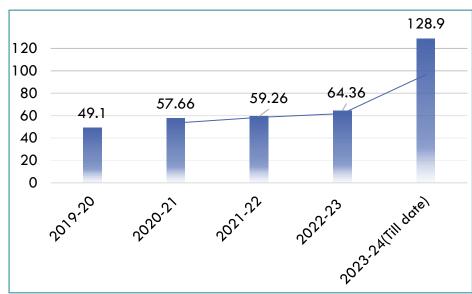
Saving potential : 4 MCM year

Water Cost saving : Rs 4.6 Cr

Pumping power Saving : 2.27 MU's / Rs 45 Lac per year

Total Cost of works : Rs 27 Cr

Completion date : 31.10.2023.



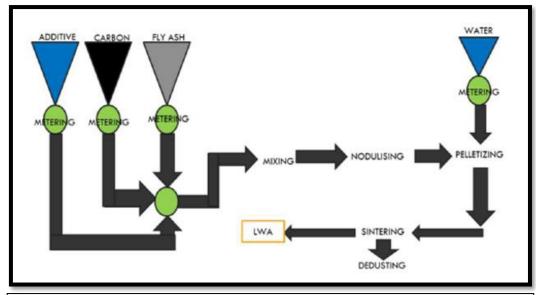
Environment Management: Ash Utilization

Modes of Ash utilization

- Dry Ash: All units DAES commissioned
- Wet Ash
- Distribution of areas of Ash utilization
 - Roads and Highways
 - Low lying area development
 - Cement Manufacturers / Bricks & Blocks
 - Total Ash brick plant capacity increase to 2.5 Lac/per day with addition of 2 LPD ash brick plant. New
 - Rail loading facility also developed and dispatch started. New
 - Mine filling Started New
 - Brick Dealership given to one agency. New
 - BIS certification awarded for ash brick New
 - Local Builder's Customer meet done to encourage use of Ash products New

Dry Ash Dispatch to Ultratech Cement, Aditya Nagar, Karnataka

Ash products- Displayed in exhibition

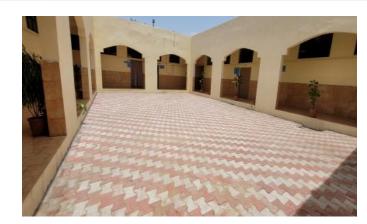

NTPC SIPAT LWA PROJECT

Trial run started by Director - Projects

Light Weight Aggregate (LWA) plant Sipat

- Fly ash based Light weight aggregate as an alternate for natural stone concrete
- 50000 Ton capacity/year plant under commissioning, first lot to be produced by 30.09.23
- Cost of LWA Rs.1700/Ton
- Cost of Natural Stone aggregate: Rs. 2000 / Ton
- Trial run started

ASH TECHNOLOGY- PROJECTS



S N	Project	Salient features	Status
1.	 Geopolymer Lab Set up 20 TPD equipment Testing facilities 	 In-House Production & Testing of Ash based products Development of Design Mix for new products and on going projects 	 Infrastructure set-up completed 20 TPD machine installed and commissioned GPCA produced Testing of GPCA under progress Water absorption - <18%, Impact /Abrasion value-<40%, etc
2.	GPCA	 In house development of GPCA (Geo Polymer Coarse Aggregate) Substitute for Natural resources Huge potential for bulk ash utilization (80%) 	The Projects are done to establish the techno commercial viabilities of the technology. The alternate use of Ash in making aggerate and sand will make save natural resources and will result in resolving ash disposal issue.
3.	NACA	 In house development of NACA (NANO Concrete Aggregate) Substitute for Natural resources Potential for bulk ash utilization (70%) 	

Ash Technology: NI projects

SN	Project	Project/Benefit	Status
4.	Ash to Sand	 Bulk ash utilization Conservation of natural resources Revenue Generation 	Under implementationCommissioning :March' 24
5.	Interlocking Wall Blocks	 No need of plastering and mortar Geopolymer/high volume fly ash based cement blocks possible 	

12000 Interlocking paver blocks used in Sipat

Ash to Sand Facility at NTPC Sipat

NEW ASH PROJECTS – RECENT DEVELOPMENTS

Biomass Cofiring

- NTPC Sipat Started Biomass (pellet) Cofiring in FY 2022-23.
- Total Biomass cofired till date : 3444 MT
- Green Power Generated : 4.67 MU's
- CO2 generation averted: 4767
 MT
- Helping Beneficiaries to meet RPO Obligations

Pellet making machine

Pelletization of Biomass generated in plant premises – to cofire with coal (200 kg/hr)

TREE PLANTATION

Tree Plantation Since Inception: 1170801

Miyawaki Technique

✓ Growing dense forest in limited space

Mission 1 Lakh Trees in FY 2023-24

	Tree plantation Plan in FY 2023-24						
1.	MGR Track (completed)	25,000					
2.	DM Plant (Miyawaki) Completed	23,000					
3.	Bhilmi Village (Miyawaki) In progress	32,000					
4	Uchbhati village (Miyawaki) PO placed	32,000					
	Total	1,12,000					

800 KW ROOF TOP SOLAR PV AT NTPC SIPAT

Туре	Location	Installed Capacity
Rooftop Solar PV	NTPC Sipat Hospital	50 KW
Rooftop Solar PV	Administrative Building	100 KW
Rooftop Solar PV	Solar PV at various building inside the plant	650 KW

Upcoming Solar PV in Sipat:

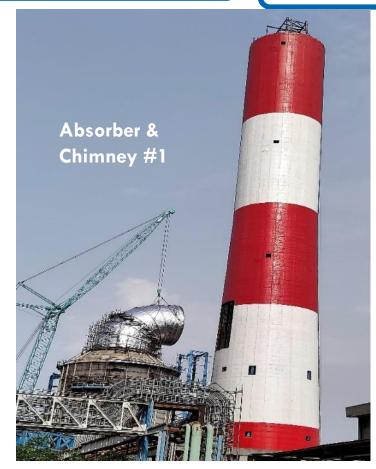
- 200 KW Solar for Township power consumption awarded.
- 25 MW Floating solar in reservoir area
- 2MW ground mounted solar in switchyard area planned.

- Energy savings of approximately ~1.4 MU's annually.
- Environment protection by reduction carbon footprints.
 (12 Lakh kg CO2 avoided)

Environment Management: Emission

Particulars	UOM	2020-21	2021-22	2022-23
Total CO2 emissions	Ton/MWh	0.85	0.85	0.85
Current Sox emission at Full Load	Mg/Nm3	1029	1018	1018
Current NOx emission at Full Load	Mg/Nm3	210	140	138
Particulate matter	Mg/Nm3	35	35	32
Mercury	Mg/Nm3	0.0010	0.0010	0.0010

Environment Management



- ZLD compliant Station (both plant & Ash Dyke)
- FGD implementation:

Commissioning - Stage 1: FY23-24

Stage 2: FY24-25

- De NOX through combustion optimization: 100%
- Wagon Covering: All wagons are being covered with tarpaulin.
- Waste Management: Hazardous, Biodegradable, ewaste and mill Reject all are 100% disposed.
- Water Spray system strengthen in all dykes to avoid any fugitive dust emission specially during summer.

Energy Management System and SEC monitoring tools

 NTPC Sipat certified with ISO 50001:2018 certification for conformance to energy management system standards in all aspects.

Energy Savings projects implemented in last 3 years

S. No	Year		Invactmant	Electrical Saving (Million kWh)		Total Saving (INR Million)
1	2020-21	11	46.5	25.3	80850	82.13
2	2021-22	7	114.78	13.64	158400	109.17
3	2022-23	5	63.0	15.94	167556	134.1

Highlight of FY 2022-23

- Repair/ Overhauling of identified mills with higher specific energy consumption
- Air ingress in duct and boiler attended during Unit overhaul
- Optimising FAHP Pump running hours.
- Stage-1& 2 CT Fill replacement.
- Condenser water box cleaning

Teamwork Employee involvement & Monitoring

Daily Monitoring System:

• Daily Planning Meeting(DPM) is conducted to discuss the critical issues and previous day performance.

Review meeting:

- Head of Plant(HOP): Safety / Environment/ Performance/ Commercial
- Operation Review Team (ORT): Head of Region review
- Regional Operation Performance Review (ROPR): Director Operation level review
- Management Committee Meeting (MCM): Chairman Level Review

Training:

- Executive MBA (PGDBM Energy- NSB/IIM-A), Samarth Program, Executive Trainee(ET) Training- 9months
- All executives given 7 day mandatory training
- Learning from NTPC trips recommendations.
- Participants for BEE energy auditor / BOE / Business excellence exam.

Audit:

- Safety audit
- 3 Energy audit every year.
- LMI audit (Internal/External/Third Party)
- Technical Audit

Learning from the CII event

• Training to O&M staff on Flexibilization by EPRI-CII expert, Knowledge shared was helpful in efficient adherence to flexible scheduling.

